An Experimental and Theoretical Study of a Bicyclic Acetal Equilibrium

Andrew P Dominey and Jonathan M Goodman*

Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK

J.M.Goodman@ch.cam.ac.uk

Supporting Information

General Experimental Details

THF was distilled from Na/benzophenone ketyl. Hexane, CH_2Cl_2 and MeOH were distilled from CaH₂. Saturated NH₄Cl was diluted with aqueous ammonia to *ca*. pH 9 and all other reagents were used as received. All reactions were performed under argon in oven-dried glassware at room temperature, except where indicated. Organic extracts were dried with MgSO₄ and concentrated at reduced pressure. Flash column chromatography was carried out on Merck Kieselgel 60 (230-400 mesh) and thin layer chromatography (TLC) was performed with Merck Kieselgel 60 F₂₅₄ plates. Optical rotations were measured at ambient temperature and IR spectra were taken using thin films on NaCl plates.

(2*R*)-1,2-*O*-Isopropylidenehept-6-en-1,2,3-triols (5). To a stirred suspension of Mg turnings (2.3 g, 95 mmol) and a few crystals of I_2 in THF (15 cm³) was added 4-bromobutene (4.5 cm³, 6.0 g, 44 mmol) in THF (2 × 5 cm³). Refluxing began

spontaneously and the solution was cooled briefly in ice. The Grignard reagent was allowed to form at room temperature for 0.5 h, when the solution was cooled to *ca*. -10 °C (ice-acetone) and (R)-2,3-O-isopropylideneglyceraldehyde 4 (2.283 g, 17.54 mmol) was added carefully in THF (3×5 cm³). The reaction was quenched after 3.5 h by the addition of aqueous NH₄Cl-NH₄OH (20 cm³), which was extracted The combined organic extracts were washed with brine $(2 \times ca.$ with ether. 0.3 volume), dried, filtered and concentrated. Flash column chromatography (SiO₂, 1:2 EtOAc-hexane) gave the inseparable alcohols 5 (2.852 g, 87%). Syn-5 (minor diastereomer) had $R_f = 0.26$ (1:2 EtOAc-hexane); ¹H NMR (CDCl₃, 250 MHz) δ 5.79 (m, 1H), 5.06-4.92 (m, 2H), 4.02-3.84 (m, 3H), 3.48 (m, 1H), 2.37 (d, 1H, J =5.0 Hz), 2.30-2.03 (m, 2H), 1.60-1.36 (m, 2H), 1.39 (s, 3H), 1.32 (s, 3H); ¹³C NMR $(CDCl_3, 62.9 \text{ MHz}) \delta 138.0, 115.0, 109.3, 79.1, 71.5, 66.1, 32.8, 29.6, 26.6, 25.2.$ Anti-5 (major diastereomer) had $R_f = 0.26$ (1:2 EtOAc-hexane); ¹H NMR (CDCl₃, 250 MHz) δ 5.80 (m, 1H), 5.01 (m, 2H), 4.03-3.85 (m, 3H), 3.75 (m, 1H), 2.34-2.08 (m, 2H), 2.21 (d, 1H, J = 3.6 Hz), 1.56-1.34 (m, 2H), 1.40 (s, 3H), 1.34 (s, 3H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 138.0, 115.1, 109.0, 78.6, 70.2, 64.7, 31.8, 29.9, 26.5, 25.3.

(4'R,5S)-5-[2,2-Dimethyl-(1,3)-dioxolan-4-yl]tetrahydrofuran-2-ols (6) and

(4'*R*,5*R*)-5-[2,2-dimethyl-(1,3)-dioxolan-4-yl]tetrahydrofuran-2-ols (7). A solution of alkenes 5 (324 mg, 1.74 mmol) was ozonised at -78 °C in CH₂Cl₂ (*ca.* 10 cm³). The reaction was quenched by the addition of PPh₃ (1.378 g, 5.25 mmol) and allowed to warm to room temperature. After 2.5 h, the solution was concentrated and flash column chromatography (SiO₂, 1:1 EtOAc-hexane) afforded *anti* and *syn* lactols 6 and 7 (*ca.* 2 : 1, 309 mg, 94%) as mixtures of anomers. 6 had $R_f = 0.23$ (1:1 EtOAc-hexane); ¹H NMR (CDCl₃, 250 MHz) δ 5.54 (m, 1H_[major]), 5.45 (m, 1H_[minor]),

4.24-3.99 (m, 6H), 3.84-3.76 (m, 2H), 3.41 (d, 1H, J = 5.8 Hz), 3.06 (d, 1H, J = 2.2 Hz), 2.22-1.77 (m, 8H), 1.44 (s, $3H_{[major]}$), 1.41 (s, $3H_{[major]}$), 1.35 (s, $3H_{[minor]}$), 1.34 (s, $3H_{[minor]}$); ¹³C NMR (CDCl₃, 62.9 MHz) δ 109.4, 98.8, 79.1, 77.2, 66.8, 32.5, 26.4, 25.2, 24.9 (major anomer), 109.6, 98.7, 80.6, 78.1, 67.0, 34.0, 26.5, 25.4, 25.0 (minor anomer). **7** had $R_f = 0.17$ (1:1 EtOAc-hexane); ¹H NMR (CDCl₃, 250 MHz) δ 5.60 (br d, $1H_{[minor]}$, J = 3.2 Hz), 5.47 (br s, $1H_{[major]}$), 4.23-3.95 (m, 6H), 3.83-3.66 (m, 2H), 3.33 (br s, 1H), 3.01 (br s, 1H), 2.18-1.75 (m, 8H), 1.44 (s, $3H_{[major]}$), 1.42 (s, $3H_{[major]}$), 1.37 (s, $3H_{[minor]}$), 1.35 (s, $3H_{[minor]}$); ¹³C NMR (CDCl₃, 62.9 MHz) δ 109.8, 98.7, 78.8, 78.2, 66.1, 34.1, 26.4, 25.4, 24.9 (major anomer), 109.8, 99.0, 79.7, 77.2, 66.0, 32.9, 26.4, 25.5, 24.9 (minor anomer).

(1*R*,2*S*,5*R*)-6,8-Dioxabicyclo[3.2.1]octan-2-ol (ent-1) and (1*R*,4*R*,5*S*)-2,8dioxabicyclo[3.2.1]octan-4-ol (ent-2). Concentrated HCl (0.100 cm³ of 31-33%, 0.9 mmol) was added to a solution of lactols 6 (112 mg, 0.60 mmol) in THF (5 cm³). The reaction was quenched after 20.5 h by pouring into saturated aqueous NaHCO₃ (2 cm³) and water (2 cm³), which were extracted with EtOAc ($12 \times ca. 4 \text{ cm}^3$). The combined organic extracts were dried, filtered and concentrated to yield inseparable bicyclic acetals ent-1 and ent-2 (*ca.* 2 : 1, 166 mg, 85%). ent-1 and ent-2 had *R*_f = 0.23 (19:1 EtOAc-hexane); ¹H NMR (CDCl₃, 250 MHz) δ 5.51 (s, 1H_[8]), 5.44 (d, 1H_[9], *J* = 3.9 Hz), 4.44 (br s, 2H_[8, 9]), 3.98-3.77 (m, 3H_[8, 9]), 3.71-3.64 (m, 2H_[8, 9]), 3.28 (s, 1H_[9]), 2.58 (d, 1H, *J* = 9.8 Hz), 2.18-1.56 (m, 8H_[8, 9]); ¹³C NMR (CDCl₃, 62.9 MHz) δ 101.8, 77.3, 67.0, 66.4, 27.5, 23.4 (ent-1), 99.9, 79.0, 68.0, 64.5, 28.3, 24.9 (ent-2). **Example procedure for bicyclic acetal equilibration.** CF_3SO_3H in $CDCl_3$ (0.050 cm³ of a 0.020 cm³ in 1.00 cm³ solution, 0.01 mmol) was added to a solution of bicyclic acetals **ent-1** and **ent-2** (14 mg, 0.1 mmol) in $CDCl_3$ (0.75 cm³) and the reaction was monitored by ¹H NMR at intervals.

(1R,2S,5R)-2-Methoxy-6,8-dioxabicyclo[3.2.1]octane (8) and (1R, 4R, 5S)-4methoxy-2,8-dioxabicyclo[3.2.1]octane (9). KH (437 mg of a 35 wt.% mineral oil dispersion, 3.81 mmol) was washed with hexane $(3 \times 1 \text{ cm}^3)$ and rinsed with THF (1 cm^3) . It was then suspended in THF (2 cm^3) and cooled to 0 °C, when bicyclic acetal mixture ent-1 and ent-2 (92 mg, 0.71 mmol) was added in THF (2×2 cm³). The reaction was stirred for 0.5 h before MeI (0.220 cm^3 , 3.54 mmol) was added. After 23 h, the reaction was poured into aqueous NH_4Cl-NH_4OH (6 cm³), which was extracted with Et₂O ($3 \times ca. 4 \text{ cm}^3$), then EtOAc ($3 \times ca. 4 \text{ cm}^3$) and CHCl₃ ($3 \times ca.$ 4 cm³). The combined organic extracts were dried, filtered, concentrated and flash column chromatography (SiO₂, 1:1 EtOAc-hexane) gave methylated bicyclic acetals 8 (27 mg, 26%) and 9 (15 mg, 15%). 8 had $R_f = 0.20$ (1:1 EtOAc-hexane); $[\alpha]_D$ -106.5 $(c = 2.00, \text{CHCl}_3)$; ¹H NMR (CDCl₃, 500 MHz) δ 5.51 (s, 1H), 4.58 (br d, 1H, J = 4.8Hz), 3.79 (m, 2H), 3.41 (s, 3H), 3.16 (br s, 1H), 1.90-1.73 (m, 3H), 1.50 (m, 1H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 101.7, 75.7, 74.2, 66.3, 56.4, 27.9, 19.8; HRMS (FAB) calcd. for C₇H₁₃O₃ 145.0865, found 145.0859 (MH⁺). **9** had $R_f = 0.24$ (19:1 EtOAchexane); $[\alpha]_{\rm D}$ +13.4 (c = 0.85, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 5.46 (d, 1H, J = 4.2 Hz), 4.58 (d, 1H, J = 6.5 Hz), 3.86 (m, 2H), 3.44 (s, 3H), 2.87 (s, 1H), 2.17-1.97 (m, 3H), 1.72 (m, 1H); 13 C NMR (CDCl₃, 62.9 MHz) δ 99.5, 76.8, 75.4, 60.5, 56.6, 28.5, 24.9; HRMS (EI) calcd. for C₇H₁₂O₃ 144.0786, found 144.0782 (M⁺); m/z (rel. intensity) 144 (5, M⁺), 85 (53), 58 (100).

(2R,3S)-1,2-O-Isopropylidene-3-methoxyhept-6-en-1,2-diol (10) and (2R,3R)-1,2-O-isopropylidene-3-methoxyhept-6-en-1,2-diol (11). KH (1.096 g of a 35 wt.% mineral oil dispersion, 9.56 mmol) was washed with hexane $(2 \times 3 \text{ cm}^3)$ and rinsed with THF (3 cm³). It was then suspended in THF (5 cm³) and cooled to 0 °C. The inseparable alcohol mixture 5 (327 mg, 1.76 mmol) was added in THF $(3 + 2 \text{ cm}^3)$ and the mixture was left to stir for 0.5 h, when MeI (0.27 cm³, 616 mg, 4.34 mmol) was added and the reaction was allowed to warm to room temperature. It was quenched after 22.5 h by pouring into aqueous NH₄Cl-NH₄OH (30 cm³), which was extracted with Et_2O (3 × 10 cm³). The combined organic extracts were washed with brine $(2 \times 15 \text{ cm}^3)$, dried, filtered, concentrated and flash column chromatography (SiO₂, 1:9 EtOAc-hexane) afforded anti and syn methyl ethers 10 and 11 (ca. 2 : 1, 327 mg, 93%). **10** had $R_f = 0.27$ (1:7 EtOAc-hexane); $[\alpha]_D^{20} + 9.6$ (c = 1.55, CHCl₃); $^{1}\mathrm{H}$ NMR (CDCl_3, 250 MHz) δ 5.81 (m, 1H), 5.07-4.93 (m, 2H), 4.02 (m, 2H), 3.84 (m, 1H), 3.41 (s, 3H), 3.25 (m, 1H), 2.16 (m, 2H), 1.58 (m, 2H), 1.40 (s, 3H), 1.33 (s, 3H); ¹³C NMR (CDCl₃, 62.9 MHz) δ138.4, 114.7, 109.0, 80.6, 77.5, 66.3, 58.6, 30.1, 29.1, 26.5, 25.3; IR 1641 cm⁻¹ (w); HRMS (EI) calcd. for C₁₀H₁₇O₃ 185.1178, found 185.1182 (M⁺ - Me); m/z (rel. intensity) 185 (35, M⁺ - Me), 149 (66), 143 (100), 101 (49), 67 (64), 57 (73). **11** had $R_f = 0.23$ (1:7 EtOAc-hexane); $[\alpha]_D^{20} + 28.2$ (c = 2.45, CHCl₃); ¹H NMR (CDCl₃, 250 MHz) δ 5.76 (m, 1H), 5.04-4.91 (m, 2H), 4.11 (dd, 1H, J = 13.9, 6.6 Hz), 3.93 (dd, 1H, J = 8.1, 6.5 Hz), 3.61 (app t, 1H, J = 7.8 Hz), 3.43 (s, 3H), 3.17 (dd, 1H, J = 12.1, 6.3 Hz), 2.14 (m, 2H), 1.63-1.21 (m, 2H), 1.38 (s, 3H), 1.32 (s, 3H); 13 C NMR (CDCl₃, 62.9 MHz) δ 138.2, 114.9, 109.2, 81.2, 77.9, 65.8, 58.6, 29.7, 29.5, 26.5, 25.3; IR 1641 cm⁻¹ (w); HRMS (CI) calcd. for C₁₀H₁₇O₃ 185.1178, found 185.1184 (M⁺ - Me); m/z (rel. intensity) 185 (8, M⁺ - Me), 101 (37), 67 (33), 44 (100).

(2*R*,3*S*)-3-methoxyhept-6-en-1,2-diol (12). To a stirred solution of acetonide 10 (39 mg, 0.19 mmol) in MeOH (5 cm³) was added a solution of HCl in Et₂O (0.010 cm³ of 1.0 mol dm⁻³, 10 µmol). Additional HCl in Et₂O solution (0.010 cm³ of 1.0 mol dm⁻³, 10 µmol) was added after 16.5 h and the reaction was heated to reflux. After a further 1.5 h, the reaction was concentrated to yield **12** (30 mg, 96%). R_f = 0.20 (4:1 EtOAc-hexane); $[\alpha]_D^{20}$ +15.8 (c = 2.55, CHCl₃); ¹H NMR (CDCl₃, 250 MHz) δ 5.79 (m, 1H), 5.06-4.93 (m, 2H), 3.72-3.63 (m, 3H), 3.53 (d, 1H, J = 4.1 Hz), 3.38-3.36 (m, 4H), 3.24 (m, 1H), 2.25-2.00 (m, 2H), 1.73-1.46 (m, 2H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 138.2, 115.1, 82.1, 72.4, 63.4, 58.4, 29.4, 29.1; IR 3382 cm⁻¹ (br), 1640 cm⁻¹ (m); HRMS (FAB) calcd. for C₈H₁₇O₃ 161.1178, found 161.1192 (MH⁺).

(1*R*,2*S*,5*R*)-2-Methoxy-6,8-dioxabicyclo[3.2.1]octane (8). A solution of diol 12 in CH₂Cl₂ (*ca.* 5 cm³) was ozonised at -78 °C. The reaction was quenched by the addition of PPh₃ (206 mg, 0.79 mmol) and it was allowed to warm to room temperature. After 22 h, the solution was concentrated and flash column chromatography (SiO₂, 19:1 EtOAc-hexane) yielded an intermediate hemiacetal (24 mg). This product was dissolved directly in THF (5 cm³) and a few 4 Å molecular sieves were added, together with a solution of HCl in Et₂O (1.2 cm³ of 1.0 mol dm⁻³, 1.2 mmol). After 24 h the reaction was filtered through celite and concentrated. Flash column chromatography (SiO₂, 1:1 EtOAc-hexane) gave bicyclic

acetal **8** (13 mg, 50%), identical (R_{f} , ¹H NMR, ¹³C NMR) with the sample prepared previously.

(2*R*,3*R*)-3-methoxyhept-6-en-1,2-diol (13). To a stirred solution of acetonide 11 (122 mg, 0.61 mmol) in MeOH (4 cm³) was added a solution of HCl in Et₂O (2.0 cm³ of 1.0 mol dm⁻³, 2.0 mmol). After 6 h the reaction was concentrated and flash column chromatography (SiO₂, 19:1 EtOAc-hexane) afforded diol 13 (93 mg, 95%). $R_f = 0.27$ (19:1 EtOAc-hexane); $[\alpha]_D^{20}$ -17.5 (c = 2.40, CHCl₃); ¹H NMR (CDCl₃, 250 MHz) δ 5.78 (m, 1H), 5.05-4.92 (m, 2H), 3.66-3.60 (m, 3H), 3.38 (s, 3H), 3.24-3.20 (m, 1H), 3.10 (br d, 1H, J = 1.3 Hz), 2.51 (br s, 1H), 2.11 (m, 2H), 1.74-1.53 (m, 2H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 138.1, 114.9, 81.1, 72.9, 63.9, 58.1, 29.3, 29.0; IR 3394 cm⁻¹ (br), 1640 cm⁻¹ (m); HRMS (CI) calcd. for C₈H₁₇O₃ 161.1178, found 161.1178 (MH⁺); m/z (rel. intensity) 178 (69, M + H₃N⁺), 161 (100, MH⁺), 129 (39, M⁺ - OMe), 99 (82, M⁺ - HOCHCH₂OH).

(1*R*,2*R*,5*R*)-2-Methoxy-6,8-dioxabicyclo[3.2.1]octane (14). A solution of diol 13 in CH₂Cl₂ (*ca.* 10 cm³) was ozonised at -78 °C. The reaction was quenched by the addition of PPh₃ (370 mg, 1.41 mmol) and allowed to warm to room temperature. After 17 h, the solution was concentrated, the crude was taken up in THF (5 cm³) and a solution of HCl in Et₂O (1.0 cm³ of 1.0 mol dm⁻³, 1.0 mmol) was added. The reaction was concentrated after 16.75 h and flash column chromatography (SiO₂, 1:3 EtOAc-hexane) gave bicyclic acetal **14** (25 mg, 38%). $R_f = 0.29$ (1:4 EtOAc-hexane); $[\alpha]_D^{20}$ -66.1 (*c* = 1.70, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 5.46 (s, 1H), 4.48 (br app t, 1H, *J* = 3.8 Hz), 4.10 (d, 1H, *J* = 7.4 Hz), 3.69 (dd, 1H, *J* = 7.1, 5.4 Hz), 3.49

(m, 1H), 3.36 (s, 3H), 1.97 (m, 1H), 1.74 (dd, 1H, J = 13.2, 6.0 Hz), 1.67-1.55 (m, 2H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 100.8, 74.9, 73.5, 64.9, 56.2, 30.7, 22.4; HRMS (EI) calcd. for C₇H₁₂O₃ 144.0786, found 144.0788 (MH⁺); m/z (rel. intensity) 144 (3, MH⁺), 101 (100), 71 (40), 58 (95).